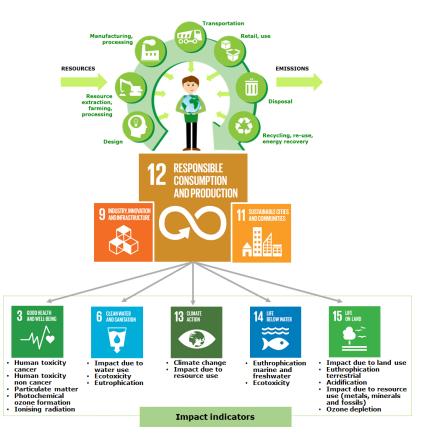

A sustainable procurement strategy for road infrastructure

25 April 2023 Léon Dijk MSc

Road types in Rotterdam (asphalt 25%)

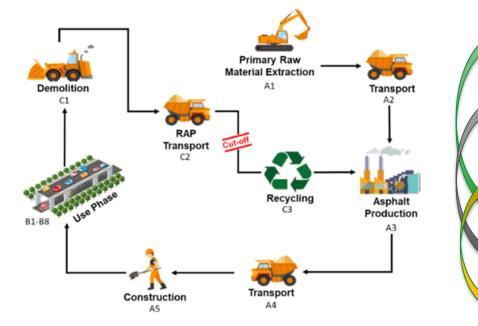
Framework agreement asphalt maintenance



- European Public Tender (1-W-14177-21)
- Duration: 2 years + 2 optional years
- Contract start date: January 2023
- Value of contract: € 40 million
- Objective: regular road maintenance including resurfacing, reconstruction, carriageway markings and all associated traffic and pedestrian management
- 600.000 tons of asphalt included
- 2 lots, one of them dedicated to innovation and sustainability
- 6 contractors (5 SME's)

Innovation Procurement Approach

- Objective: minimising environmental damages through an **innovation challenge** that lead to cost-effective abatement (including circular techniques) both at the construction site and within the supply chain while avoiding construction durability risks
- <u>Approach</u>: focusing on **contractual outcomes** using a set of indicators without prescribing specific solutions to accomplish them
- <u>Instrument</u>: awarding bids using an **environmental cost indicator (ECI)** a monitised value based on a life cycle assessment of construction materials used within a project



Source: Nationale Milieudatabase, https://milieudatabase.nl/en/environmentalperformance/environmental-performance-calculation/

Source: https://eplca.jrc.ec.europa.eu/sustainableConsumption.html

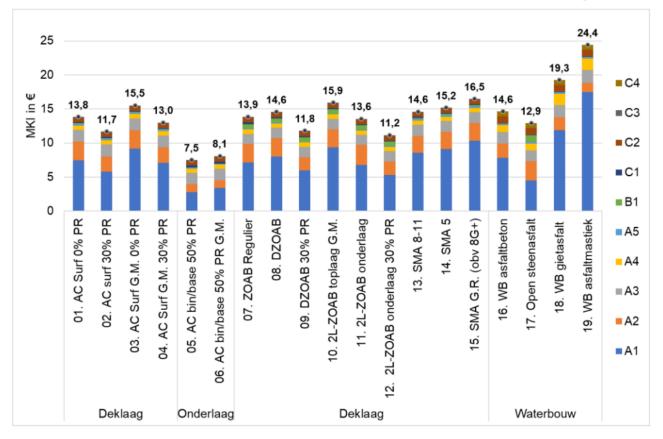
Key Environmental Indicators

Source: Siverio Lima et.al (2021). Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City, MDPI

Energy usage during production

Polycyclic Aromatic Hydrocarbons

(PAH), NOx and PM

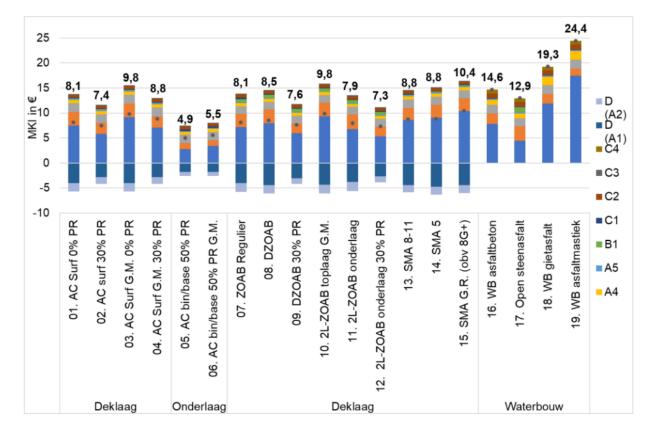

Bitumen, granulates

Global Warming Potential

Human Health and Ecosystems Quality

Abiotic Resource Depletion

Contribution analysis life cycle stages


Resources (A1), + Transportation (A2) + Production (A3) 75-88% of total impact

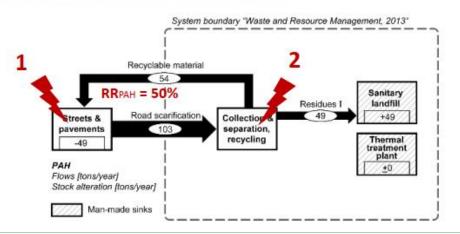
Source: Schwarz, A, et.al. (2020), LCA Achtergrondrapport voor brancherepresentatieve Nederlandse asfaltmengsels 2020, TNO

Savings of primary raw materials

Closed loop recycling is beneficial (30-50%

Source: Schwarz, A, et.al. (2020), LCA Achtergrondrapport voor brancherepresentatieve Nederlandse asfaltmengsels 2020, TNO

Circularity = sustainable?

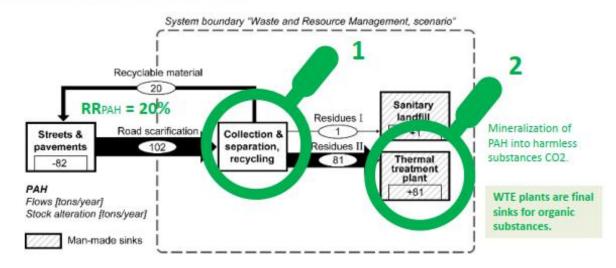

Case study 1 <u>Polycyclic Aromatic Hydrocarbons</u>

http://www.gravperbau.de

Problem:

- 1. PAH in road pavements causes environmental risks.
- 2. Recycling returns PAH to road pavements.

Source: Kral, U. et al (2021). *Sinks are indispensable for a circular economy!* TU Wien, 16th International Conference on Waste Management and Technology, June 27-28, Beijing China


Case study 1 <u>Polycyclic Aromatic Hydrocarbons</u>

Solution:

- 1. Removing PAH during recycling.
- 2. Directing PAH to waste incinerators.

http://www.graeperbau.de

Lessons learnt from LCA

- ✓ Upstream processes of asphalt production dominate total environmental load
- ✓ Recycling is beneficial as long as toxic elements are being removed and sent to final waste sinks
- ✓ Transportation could offset benefits of recycling
- ✓ Other key parameters include energy use during production

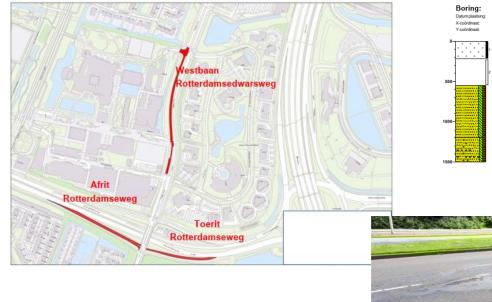
Objectives of procurement

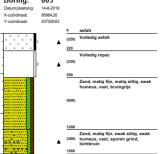
- ✓ Higher rates of reclaimed asphalt (RA) replacing asphalt binder and aggregates
- ✓ Production in proximity of the construction site
- ✓ Lower temperature mixes (warm mix asphalt, etc.)
- Durability (risks include insufficient adhesion (WMA's) & lower mixing efficiency (RAP) leading to poor rutting resistence and premature distresses of asphalt pavement)
- > Bids should be comparable using objective metrics

How did we achieve these objectives?

- The ECI as a single indicator for total environmental performance
- Technical evaluation method of structural pavement life, material characteristics etc. according to guidelines of the Dutch Technology Platform for Transport, Infrastructure and Public Space (CROW)
- In case of prescriptive asphalt types and amounts (lot 1) Rotterdam sets a treshold on the ECI/ton (Dutch reference values)
- Within lot 2, contracters are allowed to use innovative asphalt construction methods including layer design ashalt mixes maximising opportunities for innovative bids. Scope of the LCA is an LCA/project.

> Lot 2 requires more effort in terms of tender evaluation and contract management!


Method



- 1. Define the scope within the project for which you allow alternative solutions
- 2. Define technical performance criteria including evaluation method
- 3. Calculate a reference value of the ECI
- 4. The contractor receives a discount on the bid price whenever his ECI is lower than the reference value

1. Define the scope

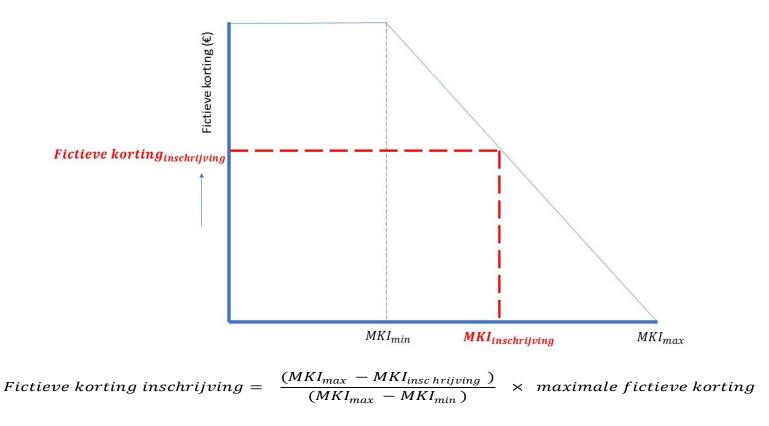
Scope definition include:

- Surface area
- Traffic data
- Samplings (e.g. PAH, asbestos)
- Layer construction
 details
- Pictures of local situation

2. Technical requirements

- Allow innovative bids
- Find the lowest ECI through material choices and layer design. There are multiple solutions.
- Ask for a declaration of performance
- ✤ EN 13108 or comparable
- Use formal calculation rules both for the construction and environmental performance
- Construction: Harmonized calculation rules for technical performance
- Environmental: Product Category Rules for Asphalt LCA's

3. Calculate reference value and compare outcomes



KESSEL	Projectonderdeel	Rotonde Blijdorpl	aan							
	Oppervlakte (m2)	1000								
		Soort mengsel	Dikte (mm)	Massa (ton)	MKI inschrijving per levenscyclusfase					
		Inschrijving	Inschrijving	Inschrijving	A1-A3	A4	A5	B1	C1-C2	Kessel
	Bovenbouw									
	Asfaltconstructie									
	deklaag	SMA-NL 11 B PMB kl3steer	35	87,50	612,50	48,13	21,88	5,25	26,25	0,71
	kleeflaag	kleeflaagemulsie	0,3kg/m2	0,30	13,38	0,36	3,02	0,00	0,01	0,02
	tussenlaag	AC 22 bind TL-C PMB	70	175,00	581,00	96,25	24,50	0,00	96,25	0,80
	kleeflaag	kleeflaagemulsie	0,3kg/m2	0,30	13,38	0,36	3,02	0,00	0,01	0,02
	onderlaag	AC 16 base 40/60 99% PR	70	175,00	187,25	29,75	24,50	0,00	96,25	0,34
	Fundering	menggranulaat	0	0,00						
	TOTAAL MK			438,10	1.407,51	174,85	76,91	5,25	218,76	1.883,28
	per m2				1,41	0,17	0,08	0,01	0,22	
BALLAST	Projectonderdeel	Rotonde Blijdorpl	aan							
DALLAST	Oppervlakte (m2)	702								
	opper viance (m2)	Soort mengsel Dikte (mm) Massa (ton)			MKI inschrijving per levenscyclusfase					
		Inschriiving	Inschrijving	Inschriiving	A1-A3	A4	A5	B1	C1-C2	Ballast
	Bovenbouw	in senting	in some yn sg	in som genge	A1-A3		~~~		01-02	Danast
	Asfaltconstructie									
	deklaag	RSMA 8B 70%PR	30	48	183,33	37,72	11,94	2,86	43,92	0,40
	kleeflaag	bitumen emulsie 0.3kg/m2	0	0.21	11.17	0.25	2.12	0	0.01	0,02
	tussenlaag	AC 16 ECO Bind	50	82	137,75	65,16	11,55	0	96,51	0,44
	kleeflaag	bitumen emulsie 0.3kg/m2	0	0.21	11.17	0.25	2.12	0	0.01	0.02
	onderlaag									0,00
	Fundering									-
	Onderbouw			130,65	343,43	103,39	27,72	2,86	140,44	
	TOTAAL MK				0,489213	0,147279	0,039483	0,004081	0,200062	617,84
VERSLUYS	Projectonderdeel F	Rotonde Blijdorplaa	n							

Oppervlakte (m2)	745									
	Soort mengsel Dikte (mm) Massa (ton)			MKI inschrijving per levenscyclusfase						
	Inschrijving	Inschrijving	Inschrijving	A1-A3	A4	A5	B1	C1-C2		
Bovenbouw										
Asfaltconstructie										
deklaag	SMA-NL 11 B PMB	35	65	365,7019	16,29688	16,29688	29,98625	24,77125		
kleeflaag	kleeflaag		0,2235	2,0115			0	0		
tussenlaag	AC 22 bind TL-C PMB 50% PR	70	130	521,5	32,59375	32,59375	0	49,5425		
kleeflaag	kleeflaag		0,2235	2,0115	2,0115	0	0	0		
onderlaag	AC 22 base OL-C 70% PR	70	130,375	340,2788	32,59375	32,59375	0	49,5425		
Fundering		let op m2	745			163,9				
TOTAAL MKI					85,50738	245,3844	29,98625	123,8563		

4. Calculate the winning bid

Market response

\$ 9 contractors (Lot 1), 4 contractors (Lot 2)
 \$ ECI reductions up to 50% compared to reference value

- ***** Up to 70% PR
- Usage of higher PR's and dematerialisation can go together